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Preface

This thesis grew out of a study done by AFIT faculty
members Stan Robinson and Jurgen Gobien which proposed a
statistical model for the infrared background field and *he
resulting detector output. The receiver structures developed
in this thesis are based upon this model. There are many
complex problems associated with the performance problem
addressed by this study and time constaints prevented me
from examining them all. I hope this study will at least
provide some insight and possibly serve as a base from
which further studies can develop.

I would like to express my appreciation to my thesis
advisor and instructor, Stan Robinson, who taught me more
about random processes and statistics than I really wanted
to know. Although I've learned alot in my studigs here at

AFIT, at this point I am glad that it is now in the past.

Stephen J. Dunning
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AFIT/GE/EE/77-15
Abstract

The use of passive electro-optical sensors in military
systems has received increased emphasis in recent years. In
particular, passive infrared sensors could potentially be
used in an infrared airborne threat warning receiver which
would detect the infrared signature of a hostile threat and
provide a warning indication to the aircraft crew.

The performance of an optical receiver designed to de-
tect a target by taking advantage of the target's spectral
signature is presented. The receiver processes the signal
in several narrow frequency bands and is based upon a sta-
tistical model which represents the field in each band as a
Gaussian random process whose moments depend upon the target
and background characteristics. The signal is detected by
an array of power detectors whose outputs are modeled as
random variables characterized by non-central chi square
probability density functions.

The optimal Bayes/Neyman-Pearson receiver structure for
an M spectral channél, N sequential look sqanning receiver is
presented and two practical suboptimal receiver structures
are developed. An attempt is made to obtain closed form an-
alytical performance expressions, but it quickly becomes
evident that closed form expressions are obtainable only for
a few special cases. Thus numerical methods using a digital
computer are used to calculate the probability of false alarm
and the probability of detection for each processor using

identical parameters. These results are used to plot a re-
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ceiver operating curve (ROC) for each processor and are com-
pared to the performance of two ad-hoc linear processors.
ROC's are obtained for variations in parameters (mean and
variance) and for one, two, and three spectral channel
receivers. r

The results indicate that the approximate receiver
structures and the ad-hoc receiver structures all have the
same performance. This is demonstrated analytically for the
case where only the mean is varied. The results also show
that performance depends only upon the difference in the
square roots of the mean to variance ratios under each
hypothesis and the ratio of the variances. It is concluded
by this study that performance equal to that of either
receiver structure derived from the general optimal processor
can be obtained by using a relatively simple ad-hoc linear

receiver.

viii
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MULTICHANNEL INFRARED RECEIVER
PERFORMANCE

I. Introduction

The use of passive electro-optical sensors has received
increased emphasis by the Air Force in recent years. Pas-
sive optical and infrared sensors have been developed for a
number of military applications. In particular, passive
infrared sensors could potentially be used in an infrared
airborne threat warning receiver which would detect the
infrared signature of a hostile threat and provide a warning

indication to the aircraft crew.

Background

The use of airborne threat warning receivers employing
scanned infrared detectors has often been proposed as a
method of detecting airborne threats such as anti-aircraft
missiles. The practicality of such scanning systems is
supported by the well developed sensor technology aquired
during the Forward Looking Infrared Receiver (FLIR) system
program. A warning receiver on board an aircraft ideally
would detect a launched airborne threat and cause some form
of defensive countermeasure to occur.

As avionics systems become more automatic in their
response to the aircraft environment, there is a obvious
need to reduce the false alarm rate of any eventual airborne

threat warning receiver while maintaining acceptable threat




detection performance. A large number of Ialse alarms would
generate distrust in the human operator and would also un-
necessarily expend countermeasure resources. A well designed
threat warning receiver would have to use signal processing
techniques which would enable the receiver to distinguish
between valid targets and phenomenon such as sun glint, open
fires, smoke stacks, and other non-hostile thermal sources

which could contribute to false alarms.

Problem Statement

The purpose of this thesis is to apply statistical
signal detection techniques to a statistical infrared back-
ground model proposed by Gobien and Robinson (Ref 11) to
determine the structure and performance of an optimal multi-

channel infrared receiver.

Approach and Scope

The receiver structure and performance problem addressed
by this thesis was divided into three distinct areas; the
statistical model, the receiver structure, and receiver
(signal processor) performance.

Statistical Model. Any receiver structure obtained

through the use of statistical signal detection techniques
requires a statistical model which describes the signals the
receiver is to detect. For the purposes of this study, the
signals to be processed by the receiver were the presence

of a valid target (the target or one hypothesis) and the

absence of a valid target (the null or zero hypothesis).

T ""‘“'W&"": i



The statistical model proposed by Gobien and Robinson and
used throughout this thesis states that the infrared back-
ground field may be represented by a Gaussian random process
whose moments depend upon the target and background charac-
teristics. The model further states that the output of a
power detector that intercepts this field is characterized
by a non-central chi-square probability density function.

Receiver Structure. Once the statistical signal model

was assumed, statistical signal detection techniques were
applied to the model to arrive at a binary receiver structure
capable of distinguishing between the two previously defined
hypotheses. The likelihood ratio was formed and an optimal
Bayes/Neyman-Pearson receiver processor structure was
obtained. Because of the complex structure of the optimal
processor, large argument and small argument approximations
were used to simplify the signal processor structure. These
approximations resulted in two practical processor structures,
a non-linear receiver processor and a small signal linear
receiver processor.

Receiver Performance. To determine receiver performance,

an attempt was first made to determine analytic performance
expressions such as the Chernoff bound for each processor
structure. It quickly became evident that the complexity of
the mathematics involved would prevent the derivation of any
useful analytic results and necessitated the use of numerical
methods to determine performance. Receiver performance was

calculated numerically using the Control Data CYBER-74




computer system available to AFIT. FORTRAN programs were
written to compute the processor output probability density
functions for each receiver structure which were then
numerically integrated to yield receiver performance in
terms of a receiver operating curve (ROC).

Numerical analysis of receiver performance was limited
by time constaints to single channel receiver performance
for five sets of parameters, and to two and three channel
receiver performance for a single set of parameters.
Identical parameters were used in the evaluation of each
receiver structure, and while the chosen parameters were not
necessarily representative of those one might obtain from a
real system, they did provide a common basis for comparison

of receiver processor performance.




II. Statistical Field and Detector Model

The binary signal detection receivers presented in this
thesis were designed to detect the presence of a valid target
against infrared background clutter by processing the output
signal from an optical detector. Before the signal processor
structure could be determined, the statistics of the signals
to be detected had to be ascertained. This chapter presents
the statistical model for the detector output signal used
throughout this study. The statistics of the observed
optical field were first examined, and these statistics were
then used to derive the statistics for the output signal of

an ideal power detector.

Field Representation

The incident field to be detected at a position r can
be described by the scalar field quantity u(r,t), which
may represent either the electric or magnetic field. For
convenience, this field is represented by its complex

envelope
U(Ept) = UR(E’t) + jUI(Eot) (1)

where Ug(r,t) is the real part of U(r,t) and Ur(r,t) is the
imaginary part of U(r,t). This representation is the same
as the quadrature field model used in radar and communication

systems. The complex envelope is implicitly defined by the

relationship
u(z,t) = Re[U(z,t) exp(-j2nfyt) (2)
5
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where f, is the optical center frequency and Re(+) denotes
the real part of the enclosed quantity (Ref 3:1810). Because
the complex envelope U(r,t) is a time varying quantity, it
is a valid representation for extremes ranging from the
incoherent light due to naturally occurring illumination, to
the coherent output of a laser. For the purpose of this
thesis, the complex envelope was used to represent the
received fields in the intermediate infrared region.

It is unreasonable to assume a priori the field that the
detector would intercept. Therefore, it is appropriate to
think of the complex envelope of the field as a random pro-
cess in both time and space. It was further assumed that
the complex envelope was a sample function of a complex
Gaussian random process. This assumption can be justified
by the application of the central limit theorem (Ref 10:266)
to the received field, where the received field is due to
the sum of a large number of individual fields, each of
which is due to the scattering of natural light by an
independent particle.

For simplicity, the real and imaginary parts of U(rx,t)
are assumed to be independent and identically distributed

(Ref 3:1849). The complete specification is then given by

E[u(z,t)] = m(z,t) (3)

E[U(E.t) U*(_I_",'t')] — R(Ep_x:'.tpt') (’4)

where the above conditions imply that R(r,r',t,t') is a real

6
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function and is twice the correlation function of either the
real or imaginary part of the field.
The optical detection problem can now be stated. When

a target is present, the received field becomes

U(z,t) = Ug(r,t) + Uplz,t) (5)

where U (r,t) is the signal or target field and Up(r,t) is
the background field. This hypothesis is denoted by Hjp.

If no target is present, denoted by Hy , the received field
is only Ub(g,t). Under the assumption that Ug(r,t) and
Up(r,t) are independent, the statistics under each hypothesis

are given by

m(r,t) = mp(r,t)

R(Evz'vtst') = Rb(En_r_'vtst') (6)
m(ztt) = ms(Evt) + mb(zvt)

R(E:E'ntot') = RS(E'E"tvt') + Rb(E'E'ttvt') (7)

With the field model described above, it is possible to
completely describe the space-time processing that should be
accomplished by a receiver and the resulting performance
(Ref 13). There are three major disadvantages to the space-
time processing approach (Ref 11). The processing and per-
formance depend upon m(r,t) and R(r,r',t,t') explicitly, and

it is unreasonable to expect that these quantities are known.
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Secondly, the space-time processing required would typically
be much too complex to implement even if m(r,t) and R(r,r',
t,t') were known. Finally, the processing would require the
measurement of the complex envelope U(g,f) and this is not
possible at most wavelengths using currently available
devices. Although equations (6) and (7) completely specify
the field statistics, the determination of m(r,t) and
R(r,r',t,t') explicitly is generally quite difficult. Thus,
reasonable approximations were sought which would permit
more practical and realizable signal processor configurations.
Two simple but crude parameters which were used to
simplify the field statistics were coherence distance and
coherence time, denoted D, and T, , respectively. The

coherence distance is described by
R(r,r'st,t ) = m(z,t) m(z'st) 5 |£ - £'|>D¢ (8)

for all t. It is the distance beyond which samples of the
field are considered to be statistically independent. The
resulting coherence cell model for the field is a simple
approximation in which it is assumed that the incident field
is spatially constant over an area (coherence cell) and is
statistically independent from the field in other cells.
Coherence time is defined as the length of time over

which the field can be broken into piecewise constant inde-

pendent samples in time and is described by

p— P
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R(Elzvtnt"'Tc) = m(zvt) m(Ent+Tc) (9)

for all r. The coherence time/cell model allows the field
to be decimated in space and time so that the field can now
be considered as a collection of random variables rather
than a random process in space and time.

The field can also be separated into a number of disjoint
frequency windows. Since the fields are considered to be
uncorrelated, the output field in any spectral window is
independent from the field in any other frequency window.
This independence between frequency windows allows the
coherence time/cell field model developed above to be applied
to the statistical description of the field in each spectral
window, differing only in the moments required to describe

each output field.

Detector Model

Utilizing the piecewise constant coherence time/cell
model for each spectral window, an array of detectors placed
in the measurement plane of the receiver can be considered.
Each detector is an ideal power detector whose active area
is matched to the smallest coherence cell expected, where
the size of the coherence cell depends upon the type of
target to be detected. Coherence cell size in excess of that
required would lead to performance degradation due to the
increase in background noise.

The intensity or rate function, A(t), of the jth detector
is given by

"pp— oz
(* s e g B S R R




- N 2
rj(t) = ﬁ¥3~£le(£’t)| dr (10)

where n is the quantum efficiency of the detector, hfy is the

energy of a photon, Aj

and 't is assumed that the intensity of the scalar field in

is the active area of the detector,

units of power per unit area is given by IU(g,t)Iz. The rate
function may be defined as the average number (ensemble) of
photo-electrons observed at the output of the detector as a
function of time.

Within the constraints of the coherence time/cell model
and assuming that the detector area Aj is on the order of the
coherence cell and that the time interval in which the obser-

vation is made is less than the coherence time, the current

output of the jth detector, centered at rj is given by

V.

j = arg(t) = L Juz, ) ? ar

hT
Aj

(o}

u

=g
H
(o]

B [uz;et)] 2 ay (11)

where q is the charge of an electron.

The statistics of the detector output can now be deter-
mined. The randomness of the detector output Y; is due only
to the stochastic nature of the received fields, since the
ideal nature of the detectér eliminates any device noise
that would bé inherent in a real photodetector. The ideal
nature of the detector serves to simplify the analysis and is

“
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based upon the contention that detector noise need not be
considered if the noiseless performance of the receiver
proved to be unacceptable. The probability density function

(pdf) of the output current of the jth detector is given by

. [ MJ i [‘/_Va_i"z_a]  y520
fJ(yJ) = 20'j

0 ; elsewhere (12)

where I () is the modified Bessel function of the first kind
of order zero. This pdf is know as the non-central chi-
square density function with two degrees of freedom. The

mean and variance of this pdf are related to the field quan-

tities by
2 .
mj = 2[—%2_0 Aj m(zj.t)J (13)
and
6:2 = [-30 4. £ [lR(r' rs,t,t) - (m(r; t))2 (14)
J TSR L e T

It is straightforward to extend Eq (12) to the joint
probability density function for the detector array. Since
the detectors are disjoint in frequency, and therefore

independent, the joint pdf is given by

M
f(y) = jgl £5(yj) (15)
11
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Eqs (12) and (15) also apply to the detector output of a
single detector which is scanned across the image plane a
coherence cell at a time. If the frame time for each coher-
ence cell is on the order of the coherence time, the detector
output for each frame time is independent and the joint pdf
is given by Eq (15), where the index j refers to the time

frame (or coherence cell) in which the measurement is made.

Infrared Background Data

To investigate the validity of the detector output model
developed above, a literature search was conducted to dis-
cover any sources of experimental data pertaining to the
statistical properties of infrared backgrounds. While many
sources relating the spectral characteristics of infrared
backgrounds were found, only two sources concerning the
statistical properties of infrared backgrounds were discovered.

The first source of statistical information was found
in a 1974 paper titled "Statistical Properties of the Back-
ground Noise for the Atmospheric Windows in the Intermediate
Infrared Region” (Ref 4). Measurements were made of various
background types using a scanning radiometer. The authors
analyzed the data and developed a statistical model for the
infrared background. While the model proposed in the paper
is based upon a combination of Gaussian and Poisson statistics
and is different from the model used in this thesis, the
statistical data presented does support the non-central chi-
square model. The distinctive shapes of the probability

density functions illustrated in the report (Ref 4:28) are

12
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all possible forms of the non-central chi square probability
density function, dependent upon the specific parameters of
the density.

Another source of infrared background statistical data
was found in a series of reports by the Lockheed Missile and
Space Company (LMSC) (Refs 5; 6; 7; and 8). Under the spon-
sorship of the Advanced Research Projects Agency and the U.S.
Army Missile Command, LMSC began the Background Measurements
Program in which natural infrared backgrounds were measured
from the air using an infrared radiometer mounted in a U-2
research aircraft.

In one report, data for one of the measurement flights
was analyzed by LMSC and the data presented in the form of
histograms for each of six spectral filters (Ref 5). The
characteristics of the six filters are listed in Table I.
While the histograms contain data for a combination of
different background types that were overflown by the air-
craft, comparison of the data with the flight track by LMSC
indicated that it was possible to separate the histograms for
each of four background types from the combined histogram.
The four background types were high cloud, low cloud, water,
and terrain. The experimental histogram for filter 1 is
shown in Figure 1.

If the number of sample points is large, the histogram
or sample relative frequency plot for each background type
will converge to the corresponding pdf for that background.
The weighted sum of these pdf's will yield a cumulative rela-

tive frequency plot or histogram. To test the fit of the

13
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Table I
Filter Characteristics

Filter No. Center Wavelength (pm) Bandwidth (pm)

3 4.50 0.202
6 L .48 0.157
g u.u 0.124

L.L 0.097
3 L2 0.074

(From Ref 5:1-1)

model with the experimental data, non-central chi-square
probability density functions were generated for each back-
ground type using parameters estimated from the histogram in
the IMSC report. The pdf's generated for filter 1 for each
background type are illustrated in Figures 2 - 5. These
pdf's were then linearly combined according to the following

equation which was derived through trial and error:

f(x) = 0.08 fHC(x) + 0,14 fLC(x)

+ 0.26 fiy(x) + 0.52 fT(x) (16)

where f(x) is the combined relative frequency function, fHC(x)
is the high cloud background pdf, frg(x) is the low cloud
background pdf, fy(x) is the water background pdf, and fp(x)
is the terrain background pdf. The numerical constants in

Eq (16) are the estimated fraction of total samples con-
tributed to the combined relative frequency function by each
type of background. The combined relative frequency plot

obtained for filter 1 is illustrated in Figure 6. This sample

14
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relative frequency plot closely approximates the experimenfal
histogram obtained by LMSC.

This procedure was repeated for filters 4, 5, and 6.
Density parameters were estimated for each background type
for each filter and the pdf's which were obtained were com-
bined according to Eq (16) to obtain a cumulative relative
frequency plot for each filter. These plots are illustrated
in Appendix A and also closely approximate the histograms
obtained experimentally by LMSC for the corresponding filter.
The data for filters 2 and 3 was so uniform that reliable
estimates of pdf parameters could not be made.

While the experimental data reviewed here does not con-
clusively prove the validity of the non-central chi-square
model, it does indicate that the model is consistent with
the experimental infrared background statistical data

currently available.

16
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III. Signal Processor Structures

A signal processor structure developed through the appli-
cation of statistical signal detection techniques depends
explicitly upon the statistical characteristics of the sig-
nals being detected. The signals to be processed by the pro-
cessors developed here are the detector outputs under the
null and target hypotheses. By correctly processing these
signals, it is hoped that the receiver will distinguish
between the presence or absence of a valid target with a high
degree of accuracy. This chapter presents the receiver pro-
cessor structures developed by using the non-central chi-
square detector output model to characterize the statistics
of the null and target hypothesis signals.

The basic receiver considered here is a scanning receiver
which , by means of narrowband filters and parallel ideal
power detectors, observes M frequency disjoint channels.

The reasoning behind this structure lies in the fact that
most targets to be detected will have characteristic spectral
signatures. By properly choosing the spectral channels, the
receiver can discriminate against unwanted sources whose
spectral characteristics differ from those of the desired
target..

The receiver processor development and following analy-
sis pertains to a receiver which makes N successive obser-
vations of M detector outputs for an arbitrary coherence cell.
The channel outputs during the ith observation of the cell

would constitute a vector y; = ¥31+1¥i2++++2¥iM where the

22

s Sl e T b O ¢---¢Wv< LN




elements are the channel output currents. Each successive
observation is assumed statistically independent and iden-
tically distributed. The first assumption is based upon thé
coherence time/cell model, while the secona assumption serves
to simplify the processor structure and later analysis by
excluding temporal processing of successive observations.

If the target has known temporal characteristics, temporal
processing would be advantageous, but at the cost of increased

receiver complexity.

Optimal Processor Structure

The totality of all observations made by the receiver is
denoted by ¥ and has the following joint probability density

functions under the null and target hypotheses:

N M 5
IO e Sl T

k=1 i=1 2010 10
Hat f£A(F) =< xI 1 s Mg ; 20
0 o\¥) = of o2 YOki Mo | ¥ ¥gs=
0io
0 ; elsewhere (17)

o 5
O 0O —p exp|l- —5 (yg3*mjg)
k=1 i=1 2041 2041

Hys £1(3F) =< X I°[€§Z-)Vyki mi1] i Yki=0
: p i

0 ; .elsewhere : (18)

—
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These pdf's are obtained from Egs (12) and (15). The receiver
must choose between the hypotheses by processing the received
signal described by the above probability density functions.
An optimal decision is made by comparing the likelihood ratio,
AF) = £1(¥)/£5(¥), with a threshold and declaring a target

if the threshold is exceeded (Ref 12:19-46). An equivalent
expression is obtained by computing the logarithm of the like-

lihood ratio. This results in the statistic z(¥), which is

defined by
N M
z(¥) = In A(F) = "5 igl[ai+bi Yeit In Io(ciNVki)
. - In Io(eiqyif)] (19)
where

g =2 ln(O'io/O'i]_) + %[(mio/ﬁio) - (mil/cil)]

o
!

b

|

2 2
3 $(1/050 - 1/0i1)
2
cj = VNmj1/053
2
ej = Amyo/0ig

If the threshold is v, then the optimal signal processor
algorithm is given by

N M D4
22 [bs vii* In Toleyliyg) - In Io(eg ] £ w  (20)
k=1 i=1 Dy
24
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=

where w = 1n(v) - N

1

n M

01

and Dy and D represent the decisions "a valid target is
present" and "no target is present," respectively. One
channel of the required processor structure is illustrated
in Figure 7. The complex processing required makes this
structure impractical for a real time system and also makes

performance analysis extremely difficult.

other
Channels
P -lnlo(eiv:‘)
|
Channel Accumulator & Do
i detector( InIy(cy) - N scans ..Comparauorrnl
w
threshold
= b (+)
|
other
Channels
Fig. 7. Optimal Signal Processor Structure
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Non-Linear Apﬁroximate Processor

The optimal processor structure may be simplified by
substituting the large argument approximation for‘the modi-
fied Bessel function into the optimal signal processor

algorithm given in Eq (20). This approximation is given by
Io(x) = X/Womx ; x>l (21)

Substituting this approximation into the processor algorithm
and reducing the expression, the new signal processor algo-

rithm becomes

5 3 ( )2? (22)
2 2 b: yr:t(ci- e Ny Sw 22
k=1 j=1 < ki Al R L) Do

where w = 1In(v) - N ¥ a; + e ln(ei/ci)

i=1

The processing required by this structure is less complex
than that required by the optimal processor and is much more
practical to implement. One channel of the non-linear pro-

cessor structure is illustrated in Figure 8.

Linear Approximate Processor

By approximating the modified Bessel function with its
small argument equivalent, the signal processor structure
can be further simplified. The small argument approximation

for the modified Bessel function is given by

26
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other
Channels
1(Ci-ei)vtﬂ
Channel || 5 AccumulatorUComparator Do
i detector /| N scans [ — Dy
w
threshold
other
Channels

Fig. 8. Non-Linear Approximate Processor Structure

I (x) = x2/b ; x< (23)

Substituting this expression into the optimal processor algo-

rithm and reducing terms, the processor algorithm becomes

D
3 3 3(ci%- €32 S (24)
bs+ 2(cs™~ es Yki < W 2
k=1 i1 1" #«\Vvji i ]. ki Do
M
where w = In(v) - N I aj

i=1

This linear signal processor structure is simpler than either
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the optimal processor or the non-linear approximate processor
and is one of the most elementary signal processor structures
possible. One channel of the necessary processing is illus-

trated in Figure 9.

Ad-hoc Linear Processors

An ad-hoc signal processor is one which is obtained
through intuition rather than analytical procedures. Two
ad-hoc linear signal processors are présented here and will
be used for later performance comparison with the non-linear

approximate processor and the linear approximate processor.

other
Channels
Channel ‘ Accumulatoy — Do
el (oA -
i detector-*}bl+4(°1 81»*\2 N scans P Dy
t
w
threshold
other
Channels

Fig. 9. Linear Approximate Processor Structure
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The processor constants used here are proportional to the
signal mean and inverse to signal fluctuation. The algo-

rithms for the two ad-hoc processors are given by

g B y y ot
2 (myy/059 - mjp/050) Vi =X W (25)
k=1 i=1 D,
and

N M Dy

2 2 - :
S 2 (myy/057 - m50/055) V3 < W (26)
k=1 i=1 D,

where w is an arbitrary threshold. The processor described
by Eq (25) will be referred to as the ad-hoc linear processor
#1 and the other processor will be designated as the ad-hoc
linear processor #2. One channel of the processor structure

for each ad-hoc processor is illustrated in Figures 10 and 11.
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IV. Signal Processor Performance

Signal processor performance is characterized by the
probability of the receiver making an error. For the Neyman-
Pearson processor structure, performance is completely spec-
cified by the quantities probability of detection (PD) and
probability of false alarm (Pgpp). The probability of

detection and the probability of false alarm are defined by

Pp = P(D1|Hy) = P(z(¥) > w|H1] (27)

- Ppa= P(D1|Ho) = P[2(¥) > w]Hg| (28)
These quantities are functions of the threshold w and are
normally plotted as a performance curve, Pp vs Prp, known as
the receiver operating characteristic or receiver operating
curve (ROC). The exact computation of the probability of
detection and the probability of false alarm requires that
the probability density function (or distibution function)
for thé log likelihood ratio, z(y), be known under both
hypotheses.

This chapter presents the performance characteristics of
the non-linear approximate processor and the linear approx-
imate processor only, as the complexity of the optimal signal
processor makes the computation of its output probability
density function unrealistic. An attempt is made to derive
analytic performance expressions by first determining the

joint pdf for the output of each signal processor. This
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impossible except for a special case of the linear approximate
processor. A general expression for the Chernoff bound on

Pp and Ppy for the linear approximate processor is derived,
but other analytic expressions could not be obtained.

The difficulty in obtaining analytic performance expres-
sions for either the non-linear or linear processor neces-
sitated the use of numerical methods to determine processor
performance. Using a digital computer, conditional processor
output pdf's were calculated and receiver operating curves
for each processor structure were generated. While numerical
methods cannot yield absolute measures of performance unless
the exact "real world" density parameters are known, by
using identical parameters in the performance calculations
for each processor, the relative performance of each proc-
essor can be determined. Performance curves are generated
for changes in mean, changes in variance, and for one, two,

and three channel receivers.

Non-Linear Approximate Processor

Starting with the non-linear processor algorithm given
by Eq (22), the processor output function, z(y), for a single

channel "i" is given by
z(y) = by y + (cij-ej)vy (29)

Since the detector output y is modeled by a non-central chi-
square random variable, through transformation of variables
the processor output probability density function can be

derived. For any given values of bj, cj, and ej there is a
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one-to-one correspondence between y and z(y), where y=0.

Completing the square and solving for y in terms of z yields

(M(ci-e3)%/bs + 2 - (ci-e5)/b;)?

T (30)

y(z)

from which the Jacobian of the transformation is found. The

Jacobian is given by

oy(z)
dz

1 (c5-e3)
— - e (31)
bi  biV(ci-e;)? + bjz

where | - | indicates the magnitude of the expression. The
unconditional single channel processor output probability

density function can now be expressed by

f(2) = Jfy( y(z) )

\/ (ci-eq)2 (ci-ei)\?
z + -
J b3 \oy m3

=—exp| - -
2
205 ZGizbi 2012
(ci-eiyzl (ci-ei)
zZ +
by | i my

> e -|— (32)

where m; and ciz are hypothesis dependent channel parameters
and the range of z depends upon the constants bj, cj, and ej.
Since each channel of a multichannel receiver is disjoint in

frequency and independent, the joint processor output pdf can
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be derived from the product of the characteristic functions
for each channel.
The characteristic function, J(u), is a special case of

the Fourier transform given by the relationship

§(u) = F(-u/2m) (33)

where F(+) is the Fourier transform of the processor output
density function. The direct computation of the transform
of the expression given by Eq (32) is a mathematical exer-
cise beyond the scope of this thesis. A search of the
Campbell and Foster transform table (Ref 1) failed to iden-
tify the necessary transform pair, which may indicate that
a general transform for the probability.density function
given in Eq (32) does not exist. The lack of a suitable
transform with which to obtain the non-linear approximate
processor output characteristic function means that analytic
performance expressions for the general non-linear approx-
imate processor cannot be derived. Single channel perform-

ance expressions can be defined by

Pp = {, f,(z|Hy) dz (34)
Ppa= § £,(z|Ho) dz (35)

but the required integration is very complex and its computa-
tion viewed as of little real value.
If it is assumed that the conditional detector output

‘variances are equal, then bj = 0 and the single channel
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pProcessor output density function is then given by

22 3
—————— e e mt
£2(2) (2] 5 (ci-ei)? ¢
z) = b
% (ci-ej)e 0i% = 2012

Z\@y
I 6
o [(ci-ei) Gin e

While this expression is less complex than that given by

Eq (32), a general Fourier transform pair still could not be
found and the direct integration of the expression remains
overly complex. Here again the complexity of the necessary
ﬁathematics prevents the acquisition of analytic performance
expressions for the non-linear approximate processor. The
attempt to find analytic performance expressions is next
directed at the simpler case of the linear approximate

processor.

Linear Approximate Processor

Beginning with the linear approximate processor algorithm
given by Eq (24), the processor output function for a single

channel "i" is given by
2(y) = [by + 3(ci2-e32)] y (37)

Through transformation of variables, the unconditional single
channel processor output probability density function is

expressed by
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R i 1 E z/K; + m3 . Zm; (38)
z 2 [K1] 012 2052 | °\VKioi*

the range of z depending upon Kj, where Kj; = by + i(ciz-eiz).
Using transform pair 655.1 from the Campbell and Foster
transform table (Ref 1), the Fourier transform for an M

channel, N look linear approximate processor is given by

mj m; N
exp|- —%| e
e 203 o 203 %(1+j4TK;01 °F)

1 - (1+j4nKiUizf)

neas

F(f) = (39)

3

where j is the imaginary unit N-1' . Unfortunately, an inverse
transform for Eq (39), which would yield an expression for
the general multichannel linear approximate processor out-
put joint density function, could not be found except for

the special case where each channel is assumed to be iden-
tically distributed. Under this assumption Eq (39) can be

reduced to

oxpl= W ¥ m exp NMmn
202 20%( 1+ j4TKO4T)

HL) = >
(1+ j4nKo“f)

(40)

where the density parameters are no longer channel dependent.
Using transform pair 650.0 from the Campbell and Foster table,
the processor output joint density function for M identically

distributed channels is given by
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Ry .3
Siiah = 1 [ M:N.m z ] LKo¥ ) 2
2l2) = kg Z)MNEXP |7 557 T kg2 \MoNem

MvN-moz] (41)

I(M-N)-l[ e

While the joint density function is in analytic form, the
calculation of the performance parameters Pp and Ppp requires
that this pdf be integrated according to Eqs (34) and (35).
This integration is prohibitively complex and a search of
available integral tables failed to yield an integral of the
required form. Even for the simpler structure of the linear
approximate processor, the derivation of exact performance
expressions remains prohibitively cumbersome. When exact
performance calculations are impossible, it is often useful

to determine bounds on error probabilities.

Chernoff Bound

An exponetially tight bound on the probability of false
alarm and the probability of detection is the Chernoff bound
(Refs 2:126; 12:121). This bound is obtained from the moment
generating function, p(s), which is derived from the condi-
tional characteristic function §(p|Hp). The moment generating
function and the resultant bounds on the probability of false

alarm and the probability of detection are given by

p(s) = 1n[E(e®%|Hy)] = 1n §(-js|Hy) (42)
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Py 3'1-exp[p(s) + (1-s)}'1(s)] (43)

Ppa= exp [p(s) - sp(s)] (k)

where E(+) indicates expected value and p(s) = dp(s)/ds .

Using Eqs (33) and (39), the characteristic function for the

linear approximate processor can be derived.

Because no

transform for the non-linear approximate processor output

density function exists, neither the moment generating func-

tion or the Chernoff bound for the non-linear approximate

processor can be obtained.

The conditional characteristic function for the linear

approximate processor output is given by

Sixp mjo
2018

8(p|Hy) =

| )|
203 §(1-j2K;05 5p) (45)

([

i=1

(1-j2K3045p)

J.

for p real, from which the moment generating function

1

BT m
(s) =N S A
e i=1|:2018(

1-2KiGiSS B

1)- hﬂi-HQGi&sﬂ (46)

is obtained. The partial derivative, p(s), is found to be

M
ﬁ(s) =N 3

2K3016

+
i=1 [ 1-2K;03 58

m3 oKy
4
(1-2Kioi§s)2] e
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The bounds on Pp and Ppp are now defined by Eqs (43) and (44),

where the optimal value of s is the solution to the equation

p(s) = w

-

where w is the previously defined threshold.

The use of the bounds in general require that a poly-
nomial be solved to obtain the optimal value of s. In all
but the most simple cases, this can be quite cumbersome.
For the single channel, one look case, the optimal value of

s was determined to be

(w-Kj038) + \/Kizcil‘o"+miol{iw
. ’ (49)
2Ki030wW

Assuming for simplicity that m;5 = 0 and that the variances
under each hypothesis are equal, s = 2/h1 where nq = mil/ci%
and the bound on the probability of false alarm is given by

21n(v)+n1} {56)

Pn f exp| -
w20

where v is the linear threshold. The limit of this bound as

nq increases without bound is
Ppa < 1/e = 0.37 (51)

Intuitively, one would expect the bound on Ppy to approach

zero as nq increased without bound, since the conditional
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processor output density functions separate as ny increases.
The loose bound on Pgpy of 0.37 indicates that the Chernoff
bound obtained is valid only for small values of nq, a result
consistent with the small argument assumption originally used

in the derivation of the linear approximate processor.

Numerical Analysis

The lack of analytic expressions with which to compare
between signal processors necessitated the use of numerical
methods to achieve a common basis for comparison. The pro-
cedure used here was to write a FORTRAN computer program
which directly computed the conditional processor output
densities of each processor for a given set of parameters.
These densities were then numerically integrated over a
range of threshold values to generate an array of values for
the probability of detection and the probability of false
alarm. These values were in turn plotted as a receiver
operating curve (ROC).

The computation of joint density functions for multi-
channel receiver performance evaluation made use of a fast
Fourier transform (FFT) algorithm to compute the transforms
of the conditional processor output densities for each chan-
nel. The product of the individual channel transforms was
then inverse transformed to obtain the conditional joint
processor output density functions. These joint density
functions were then numerically integrated as above to obtain
values for Pp and Ppp which were plotted as a receiver op-

erating curve.
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The conditional output density functions for the non-
linear approximate processor and the linear approximate pro-
cessor were derived from Eqs (32), (36), and (38) and were
expressed in terms of the parameters N = mio/big, ng =
mil/bif, and p = oif Oig . Single channel processor pefform—
ance was calculated for changes in target hypothesis mean
and for changes in target hypothesis variance. The param-
eters used in this analysis Were chosen primarily for con-
vienience in computation and are scaled versions of the
parameters estimated from the Lockheed Background Measure-
ments Program data discussed in Chapter II. Since the values
of ms o and Oig estimated from the Lockheed data are linearly
related to the detector output voltage (Ref 6:3-27), it was
asserted that the ratio of detector output mean to variance
(no) could effectively be set for a given value through
proper selection of processor components. The parameters
used to observe the effects of changes in mean upon processor
performance are listed in Table II. The parameters used to
observe the effects of changes in variance upon processor

performance are listed in Table III.

Table II
Channel Parameters for Change in Mean

L

No M P

8.0 16,0 1.0

8.0 24,0 1.0

8.0 32,0 1.0
41




Table III
Channel Parameters for Change in Variance

Mo 1 P
8.0 24.0 1.0
8.0 24 .0 155
8.0 24 .0 2.0

Typical non-linear processor output densities for change
in mean are illustrated in Figures 12- 14, It is easily ob-
served that the conditional processor output density func-
tions separate as the target hypothesis mean increases. The
resulting receiver performance curves are shown in Figure 15.
For a probability of false alarm equal to 0.10, the proba-
bility of detection increases from 0.45 to 0.96 as ny goes
from 16.0 to 32.0 with no equal to 8.0 . Typical non-linear
processor output densities for change in target hypothesis
variance are illustrated in Figures 16 and 17. The resulting
pe “.ormance curves are shown in Figure 18. As the target
hypc tliesis variance increases to twice the null hypothesis
variance with constant mean to variance ratios, the proba-
bility of detection goes from 0.80 to 0.99 for a probability
of false alarm of 0.10 . The observed changes in performance
indicate that the receiver is more sensitive to changes in
mean than to changes in variance. A representative FORTRAN
program used to generate the ROC's for the non-linear approx-
imate processor is listed in Appendix B.

To determine the effect of multiple channels upon re-

ceiver performance, performance curves were generated for one,
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two, 'nd three channel receivers. Three nearly identical
channels were used; the channel parameters are listed in
Table IV. The performance curves for the individual channels
are plotted in Figure 19. For a probability of false alarm
of 0.10, each of the individual channels has a probability
of detection of approximately O0.49. Multichannel receiver
performance curves for the non-linear approximate processor
are shown in Figure 20. The probability of detection in-
creases to 0.66 for two channels and to 0.82 for three chan-
nels, an improvement of 67% over single channel performance.
Since a similar joint density function would be obtained for
a multi-look receiver, by extension of the multichannel
results, one would also expect receiver performance to im-
prove for a multi-look receiver. A representative FORTRAN
program used to generate multichannel ROC's is listed in
Appendix C.

The same procedures were applied to the linear approxi-
mate processor using identical parameters. Typical linear
processor output densities for change in mean are illustrated
in Figures 21 - 23. The resulting receiver performance curves

are shown in Figure 24. The observed performance is identi-

Table IV
Multichannel Parameters

Channel "o nq P
1 8.0 16.0 1.0
2 9.0 18.0 1.0
< 10.0 20.0 1.0
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cal to that of the non-linear approximate processor. Typical
linear processor output densities for change in variance are
illustrated in Figures 25 and 26. The resulting performance
curves are shown in Figure 27. Again, the performance of

the linear approximate processor is identical to the perform-
ance of the non-linear approximate processor. A representa-
tive FORTRAN program used to generate the ROC's for the
linear approximate processor is listed in Appendix D. Multi-
channel receiver performance durves for the linear approximate
processor are shown in Figure 28. Linear and non-linear pro-
cessor multichannel performance is also identical. The equal
performance result is proven analytically for the single

channel case in Appendix E.

Ad-hoc Linear Processors

An ad-hoc signal processor is a processor whose struc-
ture is based upon engineering intuition rather than statis-
tical analysis. The ad-hoc linear processors presented in
Chapter III are used here to compare the relatively simple
ad-hoc processor structure with the performance of the non-
linear and linear approximate processors derived from signal
statistics.

The conditional processor output density functions for
the ad-hoc linear processor #1 are obtained from the processor
algorithm given by Eq (25) through transformation of vari-
ables. Thé.resulting single channel conditional processor

output density functions are given by
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where K; = (mil/bil = mio/bio/

These density functions can be expressed in terms of the
parameters Mg, Ny, and p previously defined. Since the pro-
cessor structure is similar to that of the linear approximat
processor, differing only in the value of Ki’ performance
curves for the ad-hoc linear processor were generated by
using the program listed in Appendix D with only slight mod-
ification. The resulting performance curves for the ad-hoc
linear processor #l1 for changes in mean and variance are
shown in Figures 29 and 30. For identical parameters, the
performance of the ad-hoc linear processor #1 is identical to
the performance observed for both the non-linear and linear
approximate processors.

Similarly, the single channel conditional processor out-
put density functions for the ad-hoc linear processor #2 were
derived from the processor algorithm given by Eq (26). The
density functions for the ad-hoc linear processor #2 are of
the same form as Eqs (52) and (53) except that K; is now
defined by

& 2 2
Ky = (my9/037 - m30/050)
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These density functions can be expressed in terms of the
parameters mjg,, Mjq. and p. For the purpose of performance
calculations the value of m;, was arbitrarily choseﬁ to be
2.5 « To make the performance calculations for the ad-hoc
linear processor #2 consistent with those for the other

processors, m;q Wwas determined by the following equation:
iy = Bygft == (54)
0

where No» N1 and p are the channel parameters listed in
Tables II and III. As before, the program listed in Appendix
D was modified to generate the ROC's for this processor. The
resulting performance curves for the ad-hoc linear processor
#2 for changes in mean and variance are shown in Figures 31
and 32. For identical parameters, the performance of this
processor is also identical to the performance observed for

both the non-linear and linear approximate processors.

Performance Parameter Dependence

In an effort to determine the manner in which receiver
performance depends upon the parameters Nos Ny and p,
functions of these parameters were tested against previous
results.

The first function tested was Ny-Ng « For the parameters
listed in Table II, this function has the values 8.0, 16.0,
and 24.0 . To test the dependence of receiver performance
upon this function, no was set equal to 0.0 and ny set equal

to 8.0, 16.0, and 24.0 . The resulting performance curves
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for the non-linear approximate processor are shown in Figure
33. Comparing performance with that of Figure 15, it is
obvious that receiver performance does not depend upon the
difference between the hypothesis mean to variance ratios.
The next function tested after analyzing the previous
results was VHT - Mg . For the parameters listed in Table
II, this function has ﬁhe values 1.17, 2.07, and 2.82 . To
test the dependence of receiver performance upon this func-
tion, ny was set equal to 6.0 and nq set to 13.112, 20.43,
and 27.856 . The resulting performance curves for the non-
linear approximate processor are shown in Figure 34. Compar-
ing these performance curves with those of Figure 15, it is
apparent that performance is identical. One may conclude
from this result that receiver performance depends upon the
difference between the square roots of the hypothesis mean
to variance ratios. This differs from the Gaussian signal
case where receiver performance depends upon the difference
between the hypothesis mean to standard deviation ratios,
mil/bil - miO/GiO . Determination of receiver performance

dependence upon functions also involving p were unsuccessful.
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V. Conclusions and Recommendations

The results of this thesis indicate a number of conclu-

sions and also suggest a number of areas for further study.

Conclusions

The following conclusions are made by this study:

The non-central chi-square statistical detector output
model appears to be valid. The model has a realistic physical
basis in the complex Gaussian random process used to model the
received infrared field and is further supported by available
experimental infrared background statistical data.

Receiver performance equal to that of either the non-
linear approximate processor or the linear approximate pro-
cessor derived from the optimal signal processor can be
obtained using a relatively simple ad-hoc linear reciever.

Receiver performance depends upon the difference between

the square roots of the hypothesis mean to variance ratios

(Vggl/bif'—Vmio/0135 and the ratio of hypothesis variances
/s 2
(035/055)
Receiver performance improves as the number of receiver

channels and the number of looks increase.

Recommendations

The following are recommendations of areas for further
study pertaining to multichannel infrared receiver perform-
ance:

While the statistical detector output model appears to

be valid, raw experimental infrared background data should be

it !
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analyzed to validate the model for different types of back-
grounds. This might be accomplished by analyzing the raw
LMSC Background Measurements Program data or by original
experiment.

Another area for futher study is to determine a statis-
tical model for the infrared emissions of anti-aircraft
missiles and to determine the effects of this model upon the
overall signal statistics.

The attempts to obtain analytic performance expressions
were frustrated by the complexity of the mathematics involved
with the non-central chi-square probability density function.
It may be possible to simplify the required mathematics and
gain some insight into receiver performance dependence by
using Gaussian approximations to the non-central chi-square
pdf. Possible approximations to the non-central chi-square
pdf are suggested in a University of Michigan technical re-
port titled "Approximations to the Noncentral Chi Square
Distributions with Applications to Signal Detection Models"
(Ref 9).

While it has been determined that the four signal pro-
cessor structures examined in this thesis have equal perform-
ance, it is not known how this performance compares with that
of the optimal processor. It is possible to calculate opti-
mal processor performance numerically by first computing the
conditional detector output density functions and then process
these density functions according to the optimal processor

algorithm to obtain the conditional processor output density
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functions. These pdf's can then be numerically integrated
to obtain receiver operating curves comparable to those of
the.other processors.

Other areas for futher study might include temporal
signal processing, adaptive receivers, and determination of
parameter dependence for multichannel and multi-look receiver

performance.
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